

Comparison of Commonly-Used Pushover and Modal Pushover Analysis of Granville Bridge

Nima Mohajer Rahbari¹, Jason Dowling¹, Don Kennedy^{2,3}, Grant Fraser¹

¹ Bridge Engineer, Associated Engineering Ltd. - Vancouver, BC, Canada.
 ² Senior Bridge Engineer and Vice President, Associated Engineering Ltd. - Vancouver, BC, Canada.
 ³Chair of Seismic Sub-Committee for CHBDC, Canada.

ABSTRACT

In current bridge engineering practice, the inelastic seismic demands of a bridge are usually estimated using response spectrum analysis (RSA) of bridges with reduced stiffnesses for realistic displacement demands. Non-linear static (pushover) analyses of each bent is then conducted separately to obtain post-elastic deformation effects in local components. As an extension to the pushover approach in use since the 1990's, a Modal Pushover Analysis (MPA) approach has been explored for the seismic assessment of building structures. In this study, RSA and MPA approaches are used in the seismic assessment of the Granville Bridge North Approach in Vancouver. Results show that the MPA approach results in an improved estimation of seismic demands by incorporating modal contribution and progressive collapse of the bridge into a 3D simulation. For the bridge studied in this project, the RSA approach resulted in conservative demands for small earthquakes and unconservative demands for larger earthquakes (e.g. 2% probability of occurrence in 50 years) in comparison to the MPA.

Keywords: Granville Bridge, Multi-Modal Pushover Analysis (MPA), Performance-Based Design (PBD), Seismic Assessment, Inelastic Demand.

INTRODUCTION

In Pushover Analysis (PA) practice, the displacement demands are usually estimated using Response Spectrum Analysis (RSA) of a bridge by reducing the initial stiffness of sub-structure to the secant stiffness at yield to account for the inelastic behavior [1, 2, 3, 4, 5]. However, this approach is a simplified treatment of the bridge response that relies on the elastic modal contributions.

As an extension of the pushover approach in use since the 1980's, a Modal Pushover Analysis (MPA) was presented by Chopra and Goel in [6], and has become an increasingly popular tool in the analysis of buildings owing to its conceptual simplicity while capturing both inelastic behavior and higher mode effects. Hence, it is an attractive analysis tool that can provide improved response estimates compared to PA without resorting to a more rigorous Nonlinear Time History Analysis (NTHA).

The MPA approach has been shown to give reliable estimates of peak inelastic response of structures, when compared to NTHA response. In addition, MPA has also been shown to be as accurate at estimating peak response well into the inelastic range, as RSA has been at estimating the elastic response. Despite these benefits, MPA has been slower to gain acceptance in the analysis of bridges, even for the analysis of more complex and irregular bridges where inelasticity can significantly affect the response.

The Granville Bridge in Vancouver is a highly irregular bridge that is composed of four distinctly-different structural systems. It has been rehabilitated and seismically retrofitted since its original construction in 1950, as part of which the main steel truss spans that have been base isolated from the seismically massive supporting piers. All of these differing systems and retrofit works make the bridges articulation complex and its predicted seismic response similarly difficult to estimate. This project involves a seismic assessment of the bridge and the design of a seismic instrumentation system, as part of which both MPA and PA were used to analyze the Northern approach spans of the bridge. The analysis results of the two procedures are compared, and their usefulness and ease of implementation from the perspective of Engineering Consulting practice are presented.

GRANVILLE BRIDGE DESCRIPTION

Granville Bridge was originally constructed circa 1950, and comprises numerous concrete approach and deck truss spans on the Granville Street alignment, with cast-in-place concrete spans for the connecting on- and off-ramps. As the scope of this assignment is limited to the North concrete approach spans, the bridge description presented is focused on those elements. Figure 1 below shows the Granville North Approach configuration.

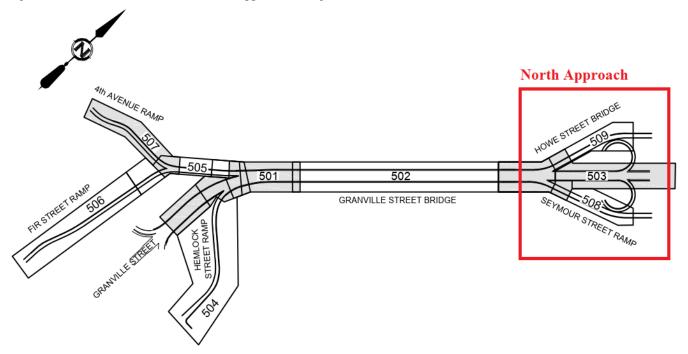


Figure 1: Granville Bridge Plan Configuration

Figure 2 shows representative photos of the Howe and Seymour Ramps. The Howe Ramp is about 163 m in length, spanning from Pier N25 to N34. The ramp comprises nine spans, which are approximately 18.3 m in length. The spans are reinforced concrete girders, and are cast monolithically with single-column concrete piers. Every second pier, there is a transverse joint running from the top of deck to the top of footing. The Seymour Ramp spans from Pier N49 to N59, and is about 182 m in length. Its configuration is similar to the Howe Ramp, comprising 10 spans of about 18 m, a similar cross section and two-span continuous 'split pier' articulation. The Granville Approach spans from Pier N8 to N22, and is about 297 m in length. It comprises 14 spans which are approximately 22 m in length, except for the spans between N20 and N22, which are about 15 m long. In all three approaches of North ramp, the pier columns vary significantly in height from about 9 m to more than 25 m.

Figure 2: Granville Bridge North Approach Typical Pier: a) Howe and Seymour Ramp; b) Granville Ramp

Granville Bridge is classified as a "Lifeline Route" bridge as per the Canadian Highway Bridge Design Code (CHBDC) classification [7]. Figure 3 shows the site-specific spectra for the seismic assessment of Granville Bridge North approach at different seismic levels as per the CHBDC requirements.

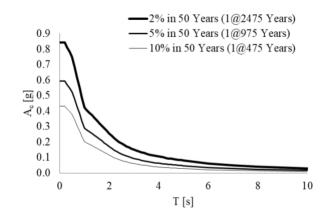


Figure 3: 5%-damped site-specific spectra for different seismic hazards

MPA APPROACH

The modal equation of motion for an inelastic bridge subjected to seismic ground acceleration, $\ddot{u}_g(t)$, is expressed by a set of N coupled equations as

$$\ddot{D_n} + 2\zeta_n \omega_n \dot{D_n} + \frac{F_{sn}}{L_n} = -\ddot{u}_g(t)(t) \tag{1}$$

where,

$$F_{Sn} = \boldsymbol{\phi}_n^T \boldsymbol{f}_s (\boldsymbol{D}, \operatorname{sign} \dot{\boldsymbol{D}})(t)$$
⁽²⁾

$$L_n = \Gamma_n M_n \tag{3}$$

 D_n , ω_n , ζ_n , M_n , and Γ_n represent inelastic modal displacement, modal (angular) frequency, modal damping ratio, modal mass and modal participation factor of the n^{th} equivalent SDF respectively. In Eq. (3), ϕ_n denotes n^{th} natural vibration mode and D is the vector of D_n displacements. Solving Eq. (1) for each mode, MPA assumes that the lateral forces (f_s) are correlated to only one modal displacement, i.e. D_n . Therefore, Eq. (3) is written as

$$F_{Sn} = \boldsymbol{\phi}_n^T \boldsymbol{f}_s (\boldsymbol{D}_n, \operatorname{sign} \dot{\boldsymbol{D}}_n) \tag{4}$$

In the MPA approach, the bridge is statically analysed under the modal static push forces and the relationship given in Eq. (4) is obtained for each mode. Then, Eq. (1) is solved for *N* inelastic SDFs and modal responses are combined using modal combination rules, e.g. SRSS, CQC, etc. F_{Sn} and D_n in Eq. (4) are related to the modal base shear, V_{bn} , and the displacement of a control joint, \underline{u}_{cn} , through the following equations

$$\begin{cases} F_{Sn} = \frac{V_{bn}}{\Gamma_n} \\ D_n = \frac{u_{cn}}{\Gamma_n \phi_{cn}} \end{cases}$$
(5)

In this study, the Capacity Spectrum Method (CSM) [8, 9] is used to solve inelastic modal equations. In the CSM, the inelastic spectral acceleration and displacement can be defined as

$$\begin{cases}
A = \frac{A_e}{R} \\
D = CD_e
\end{cases} (6)$$

where, A_e and D_e are the elastic spectral acceleration and displacement respectively. Herein, the inelastic deformation ratio of site class "C" is estimated using the following equation from [10]

$$C = 1 + \left[\frac{1}{50\left(\frac{T}{0.85}\right)^{1.8}} + 0.0182 \right] (R - 1)$$
(7)

In the above equations, R and T denote the response reduction ratio and period respectively.

COMPUTER SIMULATION

A three-dimensional finite element (FE) model of the Granville Bridge North Approach was developed in MIDAS platform (Figure 4).

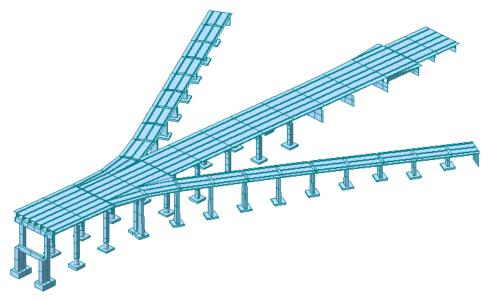


Figure 4. MIDAS model of the Granville Bridge North Approach

FE Model was used for two different types of analyses. First, the stiffness of structural components was reduced to the secant stiffness to yield (effective/cracked stiffness) and an RSA analysis was conducted to obtain inelastic seismic demands as the commonly used practice. Second, 108 plastic hinges were defined at both sides of the piers and cap beams and an MPA analysis was carried out as described earlier.

RESULTS AND DISCUSSIONS

In the MPA approach using CSM, the capacity of the inelastic SDFs are compared against the inelastic demand curves and the seismic demand for each mode is defined where the capacity and demand curves meet. Figure 5 and Figure 6 represent the CSM plots for mode 1 and Mode 2 respectively. Plots include demand curves for three different seismic events as per CHBDC requirements [7]. Figures 7 and 8 display the status of plastic hinge deformations in Mode 1 and Mode 2 for an earthquake with 2% probability of occurrence in 50 years.

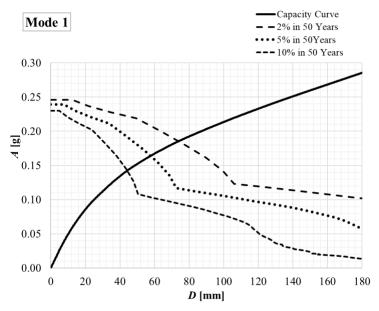


Figure 5. Spectral seismic demand of Mode 1 using CSM for different seismic events

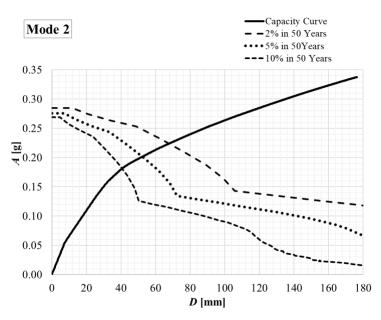


Figure 6. Spectral seismic demand of Mode 2 using CSM for different seismic events

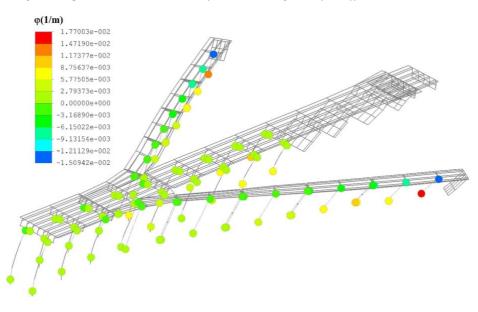


Figure 7. Plastic hinge deformations in Mode 1 for 2%-in-50-year earthquake

Table 1 to Table 3 compare the drift demand of bridge bents obtained by the MPA and RSA methods for different earthquake levels. The obtained results show that the MPA approach results in considerably lower seismic demands in both transverse and longitudinal directions for all bridge bents in all earthquake levels (up to 60%) except for the Bent 53 and Bent 54 in the biggest earthquake (2% probability of occurrence in 50 years). The reason behind these observations is that the seismic demand in MPA approach is defined based on the sequence of plastic hinge formations and progressive collapse of the bridge which are developed based on the modal contributions as it is pushed forward in accordance to a seismic demand level. Whereas, in the RSA approach, it is assumed that plastic hinges are formed everywhere in the bridge structure regardless of modal contribution and earthquake level. Hence, RSA approach generally results in overly conservative demands for small earthquakes and unconservative demands for bigger earthquakes by ignoring the effect of post-yield deformations which makes this approach less efficient especially for the seismic assessment of existing bridges.

12th Canadian Conference on Earthquake Engineering, Quebec City, June 17-20, 2019

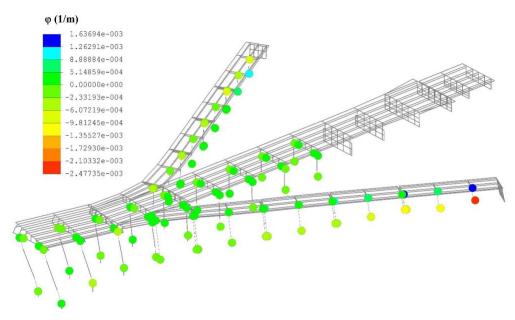


Figure 8. Plastic hinge deformations in Mode 2 for 2%-in-50-year earthquake

Transv				/erse				Longitudinal			
	Howe	Ramp	Granville Ramp				Seymour Ramp				
Bent #	RSA	MPA	Diff.	D (11	RSA	MPA	Diff.	Bent #	RSA	MPA	Diff.
	mm	mm	%	Bent #	mm	mm	%		mm	mm	%
N25	74	57	22	N8	205	126	39	N49	76	56	26
	130	82	37		131	78	40		126	82	35
N26	85	58	32	N9	140	74	47	N50	89	57	36
	124	77	38		130	78	40		114	80	30
N27	87	54	39	N10	90	59	35	N51	90	58	35
	117	72	38		122	73	40		102	76	26
N28	79	44	44	N11	75	56	26	N52	58	56	4.1
	106	67	37		126	75	41		91	72	21
N29	68	34	49	N12	71	57	21	N53	30	47	<u>-59</u>
	98	62	36		110	68	38		85	69	19
N30	54	27	50	N13	51	37	26	N54	19	36	<u>-88</u>
	90	59	34		125	77	39		82	66	19
N31	43	22	49	N14	35	24	32	N55	77	24	68
	84	57	32		109	71	35		121	64	47
N32	31	18	44	N15	24	15	38	N56	95	16	83
	79	56	29		113	72	36		108	63	42
N33	21	13	36	N16	14	8.5	41	N57	77	13	83
	76	55	27		103	68	34		97	62	35
								N58	42	9.9	76
									88	62	29

Table 1.	Comparison (of drifi	t demands o	f RSA c	and MPA fo	or 2%-in-5	50-year e	earthquake
----------	--------------	----------	-------------	---------	------------	-------------------	-----------	------------

CONCLUSIONS

As part of the seismic assessment of the Granville Bridge North Approach, the modal pushover analysis method was studied against commonly-used RSA and pushover analysis to assess the global and local seismic demands of bridges and their components for different seismic events. Results obtained showed that the MPA approach resulted in an improved estimation of inelastic seismic demands by using modal contribution and 3D progressive collapse of the bridge due to plastic hinge formation. However, the RSA approach resulted in conservative demands for smaller earthquakes (with 5% and 10% probability of exceedance in 50 years) and unconservative demands for a large earthquake (2% probability of exceedance in 50 years) by neglecting the effect of modal contribution, sequence of hinge formation and post-yield deformations.

T				Transverse					Longitudinal			
	Howe	Ramp		Granville Ramp				Seymour Ramp				
D . "	RSA	MPA	Diff.	D (11	RSA	MPA	Diff.	D	RSA	MPA	Diff.	
Bent #	mm	mm	%	Bent #	mm	mm	%	Bent #	mm	mm	%	
N25	51	46	10	N8	141	101	28	N49	52	44	15	
	89	64	28		90	61	32		86	64	26	
N26	59	47	21	N9	96	58	40	N50	54	46	14	
	85	60	29		89	61	32		83	62	26	
N27	61	43	29	N10	62	45	27	N51	62	47	24	
	80	56	30		84	57	33		78	58	25	
N28	55	36	35	N11	52	44	15	N52	66	45	32	
	73	52	29		86	57	34		74	56	25	
N29	47	28	42	N12	49	45	8.8	N53	62	38	40	
	67	48	28		75	51	32		70	53	25	
N30	37	21	44	N13	35	29	18	N54	53	28	47	
	61	45	26		86	59	32		66	51	24	
N31	30	17	44	N14	25	17	29	N55	40	19	53	
	58	44	24		75	55	27		63	49	22	
N32	22	13	39	N15	17	10	37	N56	29	13	57	
	54	43	21		77	54	30		60	48	20	
N33	15	10	29	N16	10	5.9	41	N57	21	9.6	53	
	52	42	18		71	53	25		58	48	18	
								N58	13	7.5	43	
									56	47	16	

Table 2. Comparison of drift demands of RSA and MPA for 5%-in-50-year earthquake

Table 3. Comparison of drift demands of RSA and MPA for 10%-in-50-year earthquake

	Transverse							Longitudinal			
Howe Ramp				Granville Ramp				Seymour Ramp			
Dent #	RSA	MPA	Diff.	D	RSA	MPA	Diff.	Dent #	RSA	MPA	Diff.
Bent #	mm	mm	%	Bent #	mm	mm	%	Bent #	mm	mm	%
N25	36	29	19	N8	98	79	20	N49	37	29	20
	62	48	22		63	46	26		60	48	20
N26	42	30	28	N9	67	46	31	N50	38	30	21
	59	45	24		62	46	25		58	46	20
N27	43	28	34	N10	43	32	26	N51	44	31	30
	56	42	25		58	43	26		54	43	20
N28	39	23	40	N11	37	29	21	N52	47	30	37
	51	38	24		60	44	27		52	41	21
N29	34	18	47	N12	35	28	19	N53	44	25	44
	47	36	23		52	37	30		49	39	20
N30	27	14	49	N13	25	18	27	N54	38	19	51
	43	34	21		60	44	26		46	37	19
N31	21	11	48	N14	18	11	35	N55	29	12	57
	40	32	19		52	41	21		43	36	17
N32	16	8.9	43	N15	12	7.2	40	N56	21	8.2	60
	37	31	16		54	39	27		42	35	16
N33	10	6.8	34	N16	7.3	4.3	41	N57	15	6.4	56
	36	31	14		49	40	19		40	35	14
								N58	9.4	5	46
									39	35	11

REFERENCES

[1] Nutt, R. V. (1996). "Improved Seismic Design Criteria for California Bridges: Provincial Recommnedations". Rep. No. ATC-32, Applied Technology Council, California, USA.

- [2] Wu, X. (2014). "A Study of Nonlinear Time History Analysis vs. Current Codes Analysis Procedure of Comparing Linear Dynamic Demand with Nonlinear Static Capacity for Ordinary Standard Bridge". *Challenges and Advances in Sustainable Transportation Systems*, American Society of Civil Engineers, 467-480.
- [3] Khan, S., and Jiang, J. (2015). "Performance-Based Seismic Design for the Vancouver Evergreen Line Rapid Transit Project-Process, Challenges, and Innovative Design Solutions". *Structures Congress 2015*, 573-584.
- [4] Ashtari, S., Ventura, C., Finn, W., and Kennedy, D. (2017). "A Case Study on Evaluating the Performance Criteria of the 2014 Canadian Highway Bridge Design Code". IABSE Symposium Report, *International Association for Bridge and Structural Engineering*, 3152-3159.
- [5] Khan, S., Atukorala, U., Hamersley, B., Huffman, S., Kennedy, D., Steele, L., Ventura, C., Alam, S., Ashtari, S., Jiang, J., and Zhang, Q. (2018). "Performance-Based Seismic Design of Bridges in BC". Engineers and Geoscientists of British Columbia (EGBC), BC, Canada.
- [6] Chopra, A. K., and Goel, R. K. (2002). "A modal pushover analysis procedure for estimating seismic demands for buildings". *Earthquake Eng.Struct.Dyn.*, 31(3), 561-582.
- [7] CSA. (2014a). "Canadian highway bridge design code". Standard No. CSA-S6, Canadian Standards Association.
- [8] Fajfar, P. (1999). "Capacity spectrum method based on inelastic demand spectra". *Earthquake Engineering and Structural Dynamics*, 28(9), 979-994.
- [9] Chopra, A. K., and Goel, R. K. (1999). "Capacity-demand-diagram methods for estimating seismic deformation of inelastic structures: SDF systems". *Earthquake Spectra*, 15(4), 637-656.
- [10] Ruiz-Garcia, J., and Miranda, E. (2003). "Inelastic displacement ratios for evaluation of existing structures". *Earthquake Eng. Struct. Dyn.*, 32(8), 1237-1258.